If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+35x=-42
We move all terms to the left:
7x^2+35x-(-42)=0
We add all the numbers together, and all the variables
7x^2+35x+42=0
a = 7; b = 35; c = +42;
Δ = b2-4ac
Δ = 352-4·7·42
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-7}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+7}{2*7}=\frac{-28}{14} =-2 $
| 2j-1=9-3j | | 3x-(2+1)=9 | | 12/d=5/7 | | 2r+2r+5r-5r=16 | | 2a^2+11a+3=2a | | a/16+(-29)=19 | | 13q+q-8q=12 | | 2(x+3)=9x+5-7 | | 8m-8m+3m-3=15 | | 2x-1=1/4x-2 | | 2/10+10x/10=5/10 | | 6x+16=-6-3x | | 30=-5+3(n-9) | | 12d-d4d-4d=9 | | 66-2x=79-3x | | 4x2=12X-40=0 | | 2(3x-3.2)=4x+7.6 | | 4x^2+x^2+15=140 | | 2(5-a)=5a+13 | | −(5/6)y−(3/4)=(5/9) | | 19=-7x+4x | | 5x-62+3x+26=60 | | -1/2+n=1/4 | | −5/6y−3/4=5/9 | | 10-2a=5a+13 | | 6(2+5a)=31 | | 3y+6y+18=90 | | 3y=6y+18=90 | | 12x/10=5/10 | | 3y*6y+18=90 | | 2(x-3)^3+128=0 | | √4x+14=32 |